Statistical analyses of population
genetic data: new tools, old concepts

Francois Rousset and Michel Raymond

p to a few years ago, most
genetic data analyses were
conducted using Biosys, a
package that was already
‘showing its age’ at the time of final
release, in the words of one of its
authors!. Today, it is possible to
use the so-called ‘exact’ tests -
that is, tests not affected by an
imperfect knowledge of some
parameter values - where this was
practically impossible before, as

Several methods or tests and various
software are currently being developed for
analyzing data in population genetics and

ecology, which often rely on computer-
intensive algorithms. The potential user is
thus confronted with the painful
experience of freedom and, in particular,
has to make a priori choices between
different methods. Using examples drawn
from population genetics, we explain
some of these recently developed tools.

an asymptotic approximation to
the true value that depends on p.
The other solution, more rarely
applicable, is to find a probability
distribution that is independent of
the unknown parameter p. In the
present example, although the
probability distribution of sam-
ples is dependent upon the allelic
frequency, the conditional proba-
bility among all possible samples
with the same observed total

well as various resampling meth-
ods. The recent emphasis on
hypervariable DNA markers23,
where the number of alleles is
large relative to the sample size,
revives some classical statistical
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(‘marginal’) allelic counts n, and
n 4 (as in Box 1) is independent of
this frequency. This conditional
probability is

n'n,mn, !'n,!

@

problems and justifies the current
interest in exact tests in situations
where traditional asymptotic procedures can be mislead-
ing*-6. More-refined asymptotic procedures, such as some
implementations of the bootstrap, may also be constructed.

The user is not only confronted with a choice of various
resampling techniques or exact tests versus more traditional
methods, but also with a choice of different test statistics
(to define a rejection zone) and different algorithms. One of
the most commonly encountered problem is testing inde-
pendence in two-way contingency tables. Although this is
a limited approach to data analysis, two-way contingency
tables have always been an excellent introduction to impor-
tant statistical concepts. Standard uses include testing for
genetic differentiation between populations or linkage dis-
equilibrium®-8, or for random species associations in ecologi-
cal studies?®.

To define a test, it is necessary to define a probability
distribution under some ‘null’ hypothesis, and to compute
probabilities given this distribution. A common problem in
the definition of tests is that probability distributions under
the ‘null’ hypothesis may depend on unknown parameters.
Consider two subpopulations, from which two samples of
size n, and n, are analyzed at one locus presenting two al-
leles a and A. For example, n,, genes of allelic type a are
sampled in population 1, and a total of n ,=n,,+ n,, genes of
allelic type a are sampled among a total of n_=n, +n, genes.
The probability of some sample (n,,, 1,4, 25,, N54), under the
null hypothesis of no subpopulation differentiation, is:

nn,!
n,'n,, 'n,ln,,!
la *""2a *""1A 2A

(where n;=n,;+ n,;) and depends on the unknown frequency
p of allele A in the population.

It is well known that whatever the frequency p, the dis-
tribution of the chi-square statistic can be approximated by
the chi-square distribution and this approximation improves
as sample size increases. This illustrates the first traditional
answer to this problem, where the probability computed is

)

(1-p)" p™
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Atest based on such a distribution is ‘exact’ in the sense that
exact probability values can be computed, although p is un-
known. Exactness of tests does not imply that they ‘tell the
truth’ about some hypothesis, since the outcome of the analy-
sis can only be a statement about probabilities of events.
Examples of exact tests in population genetics are listed in
Table 1.

Persistent doubts are expressed about the use of the
probability distribution defined by eqn 2, and methods based
on the estimation of unknown parameter values are still pro-
posed particularly in the ecological literatureld.!!, The logic
underlying the definition of exact tests shows that (1) the
choice of a distribution where marginal counts are fixed
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Table 1. Some exact tests available
in population genetics

Type of testa Probability distribution Statistics Refs
Distribution of conditional on
Hardy-Weinberg  genotypic counts allelic counts various 5,19
Population allelic counts allelic counts various  7,8,28
structure genotypic counts genotypic counts  various 28,42
Linkage two-loci genotypic Pr(S)° 43,44
disequilibrium genotypic counts counts for
each locus
allelic counts allelic counts Pr(S) 6,45
Ewens-Watterson allelic counts number of Ip2e, 46,47
alleles Pr(S)

most of these tests are available as described in the references given.
bPr(S) is the probability of the sample under the null hypothesis.
°Lp?;is the sample homozygosity.

aEach test is characterized by a probability distribution generated under the null
hypothesis, and a test statistic used to define the rejection zone and to compute
the P-value. For each probability distribution, there are as many exact tests as
possible statistics, and only some of them are indicated. Computer programs for
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Table 2. Test statistics and ranking

Genotypes? Ranks®
AA AB BB AC CD Pre Pr 8§ & G,
1 1 1 1 0 3
o 0 o 2 1 35 2 2 2 3
1 1 1 0 1 1
O 0 0 3 0 = 13 4 4
1 1 0 1 1 3
0 0 1 5 0 35 2 9 12 10
1 1 0 2 0 3
o 0o 1 1 1 = 2 47T
1 0 o] 2 1 3
o 1 1 1 o0 3B 2 2 3 3
1 0 0 3 0 1
o 1 1 o0 1 35 1112
1 0 1 1 1 3
0 1 0 5 0 e 2 11 14 11
1 0 1 2 0 3
0 1 0 1 1 5 2 10 13 10
0 1 1 1 1 3
1 0 0 2 0 = 2 2 5 5
0 1 1 2 0 3
1 0 0 1 1 5 2 6 & 6
0 1 0 2 1 3
1 0 1 1 o0 35 2 8 10 9
0 1 0 3 0 1
1 0 1 0 1 35 o7 8 8
0 0 1 2 1 3
1 1 0 1 o0 = 2 5 9 8
0 0 1 3 0 1
1 1 0 0 1 T 1o 19
0 0 0 3 1 1
1 1 1 0 o0 5 1o 11
aThe table describes genotypic data from two populations. For the five distinct geno-
types indicated, all possible contingency tables corresponding to the row marginal
genotypic values of 4 and 3 and the column marginal values of 1, 1, 1, 3, and 1 are
depicted.
Pr can be used as a statistic, and used to rank all tables. Other statistics can be
computed and used to define other rarlkingsLSome examples of possible statistics
are given here: two estimators of Fg; (8and 6, defined in Ref. 41), and G,, the log
likelihood ratio computed from the allelic counts#2. The Pvalue is defined as the
sum of probabilities (Pr) of tables with an equal or lower rank than the observed
table. As an illustration, if the observed sample is the one in bold characters, then
the exact Pvalue is 1 (probability test), 0.314 (8test), 0.143 (8, test) or 0.229 (G,
test).
<Pr is the conditional probability of each table under the null hypothesis.
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must be based on explicit probability arguments, (2) it is
not necessary for the marginal counts to be fixed in advance
by the experimental set-up’?, and (3) it is not necessary to
estimate the unknown frequencies. These points are impor-
tant to keep in mind because they are also the basic justifi-
cation of permutation procedures: permutation techniques
are relevant when the distribution generated by permutation
is independent of the unknown parameters under the ‘null’
hypothesis.

As an illustration, we can consider Mantel tests, which
are used increasingly in population studies3-15. Suppose
that the ‘null’ hypothesis is that genetic differentiation fol-
lows an island model (Box 2), with each subsample assumed
to be sampled from a different subpopulation. For any given
parameter values (i.e. values of 4Nmp, 4Nmq in Box 2), the
probability distribution of each subsample!® is independent

of the observed subsamples in other subpopulations so that
the probability of observing subsamples s, and s, in geo-
graphic positions a and b, respectively, is the same as that
of the reverse observation under the ‘null’ hypothesis. It is
then possible to test for a relationship between genetic data
and geographic distance by permutation of the subsamples
between the different geographic locations. Such a test will
be ‘exact’. By contrast, no conclusion can be drawn from
random permutations of pairwise statistics (such as pair-
wise Fy; estimates) between the different pairs of locations
(cf. Box 3).

Some extensions of Mantel tests have been proposed
such as partial Mantel tests, where the ‘null’ hypothesis cor-
responds to a correlation of some pairwise parameter with
one parameter and aims to test for a partial correlation with
another one!*1517 but the validity of the permutation pro-
cedures proposed in such cases remains to be formally
investigated.

The choice of the statistic

A statistic is computed from the data, and is used to
rank all possible samples of the distribution. The P-value of
the test is then computed by summing up the probabilities
of all samples of one side of the ranking, starting from (and
including) the value of the observed sample (Table 2). Thus,
different test statistics define different rankings of possible
samples, but the P-value is in all cases defined as a sum of
exact probabilities of samples with more extreme ranks, so
all tests are exact tests. The probability of the observed sam-
ple is used as a test statistic in many situations (thus defin-
ing an exact probability test), but this choice, which traces
back to Fisher’s exact test for contingency tables!®, has no
general justification.

How do we choose the test statistics? A test statistic is
generally chosen to maximize the power of the test when
some specified alternative hypothesis is true. It is therefore
pivotal to have an idea of what could be a (biologically)
plausible alternative hypothesis in order to design a power-
ful test. When specific alternative hypotheses have been
formulated and probability distributions under the alterna-
tive hypothesis are known, it is possible to define more effi-
cient test statistics and more efficient estimators.

For example, phenomena such as selfing and other types
of inbreeding lead to a specific form of heterozygote de-
ficiency which is often the appropriate alternative hypoth-
esis to design tests of random mating!®, Sometimes it is less
easy. For example, a sampling distribution is known for the
island model, and has been used to define an estimator of
Nm that is efficient for this model?’, but there is no equivalent
result for other possible models of population structure.

Likewise, departure from neutrality could be the result
of selection for particular genotypes, which leads to various
predictions concerning the allele frequency distribution or
the genotypic constitution. In most cases, the kind of selec-
tion acting on the locus studied is not known a priori; thus
the formulation of a biologically sound alternative hypoth-
esis of a test of neutrality is difficult. This is illustrated by the
low power of the Ewens-Watterson test (which uses the
sample homozygosity as a test statistic) with respect to spe-
cific types of selection?!.

Computing or estimating P-values

To compute the P-value of an exact test, all possible sam-
ples of the probability distribution must be considered and
ranked according to a particular test statistic (see details in
Table 2). This complete enumeration is not always pos-
sible, either because algorithms generating this exhaustive

TREE vol. 12, no. 8 August 1997



sampling are not presently available or because compu-
tation time is limiting due to the large number of possible
configurations to be considered. As an illustration, the num-
ber of possible genotypic tables corresponding to a sample
of 40 individuals with 4 equifrequent alleles is 6671, and is
higher than 107 if the sample size is increased fourfold. One
solution is to estimate this P-value by considering only a
‘random’ subset of possible samples. This subset is gener-
ated using two possible sampling techniques: permutation
or Markov Chain Monte Carlo (MCMC) algorithms. For both
methods, the probability of sampling a particular element

is equal to its probability of occurrence under the ‘null’.

hypothesis. The principle of permutation is to generate
independent random samples under this hypothesis. The
principle of MCMC is explained in Box 1. The main weakness
of MCMC is that the speed of convergence to the correct
value, though usually much faster than that of permutation
algorithms for many applications®?, cannot be predicted in
advance?2, This issue is a current area of investigation?®2,

The bootstrap: an alternative?

The principle underlying the bootstrap is that if we do
not know the true distribution of the difference between an
unknown parameter 6 and some estimator of this parameter,
we can approximate it by the distribution of the difference be-
tween an estimate 8 obtained from a particular data set and
estimates computed from different imaginary data sets gen-
erated using information provided by the sample. Instruc-
tive examples are given in the context of mark-recapture
experiments in Ref. 23 and in the context of phylogenetic
analysis in Ref. 24,

There are two ways to generate such imaginary data
sets. In the nonparametric hootstrap, they are obtained by
sampling with replacement within the real data set. For ex-
ample, the distribution of the difference between an estima-
tor of Fi; and the true value of Fi; could be approximated by
the distribution of the difference between an estimate £
obtained from several loci and further estimates computed
from different resamples of loci from this data set. The para-
metric bootstrap is similar except that one generates imag-
inary data sets according to a probability distribution whose
parameters are estimated from the real data set. For exam-
ple, the data may be used to estimate the parameters p and
Nm of the distribution of subpopulation gene frequency x in
an island model (Box 2). Then imaginary subpopulations
can be generated by sampling from the distribution with
estimated parameter values p and Nm, and imaginary data
sets can be generated by sampling from such imaginary
populations. In both cases it is possible to define confidence
intervals for the parameter values (see Ref. 25 for a recent
review and discussion of the different methods).

Though superficially similar to permutation methods,
bootstrap methods are based on large sample approxi-
mations and are not an alternative answer to problems that
can be solved by exact methods. Rather, they can address
other problems. Like other asymptotic techniques, they may
be the only ones available for most questions of interest.
However, they can be misleading and may need laborious
studies to be validated. There are as yet few investigations
of possible uses of the bootstrap for population genetic
analysesf2627 and it has not always been found accurates.
However, these studies did not consider improved uses of
the bootstrap such as those discussed in Ref. 25.

Applying the bootstrap to population structure

How can we define bootstrap confidence intervals for the
value of Fi;? Consider the example of an island model with
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Box 1. Principle of Markov Chain Monte Carlo algorithms

Consider all possible contingency tables, shown below, with margins

The principle of MCMC is to define a ‘random walk’ between these different states,
with the probabilities of transition from one state to another chosen so that the
probability of being in some state is that expected under the hypothesis con-
sidered. This is done using the Metropolis-Hastings algorithm34 where transition
probabilities between any two states are a function of the ratio of probabilities of
being in each of them. For example, the probability of tables 71 and T2, according to
eqn (2), are Pr(T1)=6161414141/12121412!141 = 0.006464 and Pr(T2) = 6l6!41414!/
121413131 =0.01732, but the transition probability from T1 to T2 is a function of
Pr(72)/Pr(T1) which is simply 8/3.

204
240
/ \
114 303
; 330 - 141
- 024 ™~ 213 N 402
© 420 231 042
123 312
321 132
033 — N 222 — ™~ 411
411 202 33
™~ 132 — N 321 —
312 123
042 — N 231 — N 420
402 213 024
™~ 141 — ™~ 330 —
303 114
\ /
240
204

In addition, it is possible to prevent transitions in both ways between pairs of
states, as long as there is still some path leading from any state to any other.
Hence for simplicity one allows only transitions between states i and j such that
the ratio of probabilities Pr(i)/Pr(j) remains simple to compute, such as the tran-
sitions between connected states below. This and other simplifications are strong
advantages of MCMC algorithms and explain their application in various contexts
where permutation techniques are less easily implemented or even irrelevant?35.36,
notably for maximum likelihood estimation.

For the probability test, the P-value is the sum of probabilities of all matrices
(in bold) that have equal or lower probability than the observed one (say T1). It is
estimated by the fraction of time the Markov chain is in one of them. The precision
of this estimate increases with the number of iterations of the Markov chain.

REVIEWS

migration rate m between subpopulations, and two possible
alleles A and a. The probability distribution of the allele fre-
quency would follow Wright's distribution (see Box 2). In this
model, Fg; =1/(1 + 4Nm). Now suppose that n individuals are
sampled in each of two subpopulations, and we wish to esti-
mate Nm. What will happen if we resample individuals? Fi; is
estimated from sample allele frequencies, and the larger the
sample size n, the closer we will be to some value, which will
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Box 2. The island model and the definition of F;

In the island model, migrants into a subpopulation are supposed to come with iden-
tical probabilities 1/n from any other of a number n of subpopulations. If nis large
and the fraction of migrants is m << 1, and considering only two alleles for sim-
plicity, the probability distribution of the gene frequency x in a particular subpopu-
lation is approximately f(x)=CxaNmp-1(1 - x)¥Mma-1 where C is a constant, p and
g=1-p are the gene frequencies in the total collection of subpopulations, and N
is the subpopulation size. Thus the probability of identity Q,,, of a pair of genes
sampled within a subpopulation is the expectation of x2+ (1-x)2:

1 2 2 2

Quine = [ 18+ (1= x) 1) = AL 2T

and the probability of identity of a pair of genes sampled between subpopulations
is the sum of squares of expected allele frequencies, Qg = P2 + g2 Hence Fyr
defined as (Qiin — Qamong)/ (1 = Qamong) @S value 1/(1 + 4Nm). This is no more than
Wright's result37, formulated in terms of probabilities of identity in state for pairs of
genes, rather than identity by descent or ‘standardized variance of gene frequen-
cies’. With this definition, it is easier to grasp basic properties of both the param-
eter Fg; and its estimators in more complex models38-40,

In the present context Fg; is not defined as a function of the allele frequencies
in some subpopulations, say x, and x, in two subpopulations under study. These fre-
quencies as well as probabilities of identities for these particular subpopulations —
the so called ‘actual values’, gy, ;1= X,2+ (1= %)2 and Gyong = XpXo + (1= X )(1 - %)
- are random variables that will differ for each pair of subpopulations. By contrast,
Fsr is a parameter, that is, it is a property of a probability distribution rather than of

a particular realization of the process considered.
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be determined by the frequencies of the A allele in the two
subpopulations. But this value will not be 1/(1 + 4Nm). This is
readily seen by the fact that if we had taken another pair of
subpopulations, the frequency of A in each of them would be
different from those in the previous pair, so when the sample
size increases, the F;; estimates would become closer to
another value: we do not get closer to the parameter value,
but to a random value different for each pair of subpopu-
lations. Consequently, a test based on a confidence interval
constructed in this way should almost always reject the cor-
rect parameter value for large sample sizes.

The appropriate question is whether the value of the
variable considered in some population (not its estimate on
a sample) is a random variable the distribution of which is
determined by the parameter value, or a fixed value identi-
cal for different populations exposed to the same process.
This is the question to consider in order to choose between
fixed and random models in statistics. In models where gen-
etic drift plays a role, quantities such as the subpopulation
frequency x (Box 2) are random variables (sometimes called
‘actual’ values). Since Fy; is mainly used to measure the
effects of genetic drift relative to other evolutionary forces,
resampling individuals will generally not be appropriate for
inferences about Fg; values?®. Resampling loci may not be a
perfect solutiond2, Because typical population genetics
studies rarely consider more than twenty loci, studies are
needed to check that bootstrap confidence intervals gener-
ated by resampling loci are satisfying. But confidence inter-
vals obtained in this way can be free of the problem of con-
vergence to an incorrect parameter value.

Persistent problems

As new statistical techniques are proposed, the need to
understand traditional concepts of probability and statistics
is stronger. We have illustrated this need in some of the
simplest problems encountered in population genetics. The
recent development of efficient algorithms for exact testing
and the large access to computer power provide a new input
for the analysis of population data. More efficient tests and
estimators can save much effort, but the more general prob-
lem of constructing confidence intervals for estimates of

Box 3. How not to do permutations

Consider a {(semi-)matrix of f; estimates ":/7 computed from all possible

pairs of samples { and j among four samples:

Fip
Fis Fa3

Fiz
Fa4 Fas

Fia Fa4 Fia

A test based on a permutation procedure that generates such permuted
data sets could be used if the observed and permuted configurations
had the same probability under the null hypothesis. But in the first table
the first two elements of the first column are £,, and £, 5, and in the sec-
ond they are £,, and £,,. The joint distribution of 7, and 7, is entirely
determined by the joint distribution of subsamples s;, s, and s,,

S3

while in the second table the joint distribution of #,, and £, is entirely
determined by the joint distribution of subsamples s,, s,, $; and s,

Sl(F;Z)Sz

s3<—F3“—>s4

It will be identical to the joint distribution of s,, s, and s; above only
when s, =s,. The probability distribution of a pair of estimates (F;,,£,,),
each defined from different subsamples, is not the same as that of
(F,5.F13) that involves the same subsample s,. Generalizing the argu-
ment to the whole matrix, we see that it fails to satisfy the require-
ments of permutation tests. No conclusion can be drawn from consid-
ering all permutations of elements of a matrix of Fg; estimates or any
other statistic on pairs of populations. In contrast, the Mantel test is
based on consideration of only a restricted subset of permutations,
obtained by permuting subsamples between geographic positions
rather than pairwise statistics between cells.

standard population genetic parameters has not yet any
answer.

Traditional parameters such as Fg; may be used to de-
tect differences in levels of differentiation of populations ex-
posed to different evolutionary processes, for example if a
group of populations is expected to display a higher F;; than
another group, or they may be used as measures that allow
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the estimation of demographic parameters such as neighbor-
hood sizes. In the first case, one would prefer a statistic whose
distributions under the two situations we wish to distinguish
do not overlap, such as an estimator with low variance. In the
second case an estimator with low bias may be preferred.

However, in both cases we need realistic models to as-
sess the power of different statistics or the efficiency of dif-
ferent estimators. Many studies have argued that there are
discrepancies between direct and indirect estimates of gene
flow parameters0-33, implying that the models generally con-
sidered are inappropriate, or inappropriately interpreted,
or that present statistical analyses are inefficient. Whatever
the reason(s), a better understanding of real populations
will be necessary to show that many of the currently devel-
oped computer-intensive methods improve the efficiency of
statistical analyses.
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